Identifying Redundant Linear Constraints in Systems of Linear Matrix Inequality Constraints

نویسندگان

  • Shafiu Jibrin
  • Daniel Stover
چکیده

Semidefinite programming has been an interesting and active area of research for several years. In semidefinite programming one optimizes a convex (often linear) objective function subject to a system of linear matrix inequality constraints. Despite its numerous applications, algorithms for solving semidefinite programming problems are restricted to problems of moderate size because the computation time grows faster than linear as the size increases. There are also storage requirements. So, it is of interest to consider how to identify redundant constraints from a semidefinite programming problem. However, it is known that the problem of determining whether or not a linear matrix inequality constraint is redundant or not is NP complete, in general. In this paper, we develop deterministic methods for identifying all redundant linear constraints in semidefinite programming. We use a characterization of the normal cone at a boundary point and semidefinite programming duality. Our methods extend certain redundancy techniques from linear programming to semidefinite programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

متن کامل

Fully fuzzy linear programming with inequality constraints

Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Nu...

متن کامل

Implementing an Algorithm for Detecting Redundant Linear Constraints in Semidefinite Programming

We study the system consisting of a linear matrix inequality (LMI) constraint and linear constraints of the form: A(x) := A0 + n ∑ i=1 xiAi 0, bj + a T j x ≥ 0 (j = 1, 2, . . . , q) where Ai are m×m symmetric matrices, aj and x ∈ IR , and bj ∈ IR. A(x) 0 means that A(x) is positive semidefinite. A constraint in the above system is redundant if eliminating it from the system does not change the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006